Basic algorithm - other

xiaoxiao2021-03-06  107

Seven-based conversion

1 Mutualization of any positive integer

In addition to N

2 Real numbers arbitrarily interacting

Take N

3 negative numbers:

Design a program, read into a base of decimal number and a base of a load, and the decimal number

Converted to this negative number: -r∈ {-2, -3, -4, ....- 20}

Eight all arrangement and combination

1 Arranged: (1..n)

Procedure Solve (dep: integer);

VAR

i: integer;

Begin

IF DEP = N 1 THEN Begin WriteLn (S); EXIT; END;

For i: = 1 to n DO

IF NOT USED [I]

S: = S CHR (i ORD ('0')); used [i]: = true;

Solve (dep 1);

S: = COPY (S, 1, Length (s) -1); used [i]: = false;

END;

END;

2 Combination generation (all options for selecting K numbers in 1..n)

Procedure Solve (dep, pre: integer);

VAR

i: integer;

Begin

IF dep = K 1 THEN Begin Writeln (S); EXIT; END

For i: = 1 to n DO

IF (not used [i]) and (i> pre) THEN BEGIN

S: = S CHR (i ORD ('0')); used [i]: = true;

Solve (DEP 1, I);

S: = COPY (S, 1, Length (s) -1); used [i]: = false;

END;

END;

IX. Find algorithms

1% off

Function Binsearch (K: KeyType): Integer;

Var Low, HIG, MID: Inteder

Begin

Low: = 1; HIG: = N;

MID: = (low HIG) DIV 2;

While (a [mid] .key <> k) and (low <= HIG) DO Begin

IF a [MID] .key> K Then Hig: = MID-1

Else Low: = MID 1;

MID: = (low HIG) DIV 2;

END;

If low> hig kil: = 0;

Binsearch: = MID;

END;

2 tree look

Binary sort tree: The value of each node is greater than the value of the left sub-tree, which is less than the value of the right tree.

.

Look up

Function Treesrh (K: KeyType): Pointer;

VAR Q: POINTER;

Begin

q: = root;

While (q <> nil) and (q ^ .key <> K) DO

IF K

Else Q: = Q ^ .right;

Treesrh: = q;

END;

Ten, greedy

* Meeting questions

(1) N activities have a start time and an end time, only one event is only available.

Seeking to meet the most active number.

Solution: Sort by the end time of each activity, the top priority is satisfied.

(2) The meeting room has the least free time.

(3) Every customer has a wish to pay for maximum profit.

(4) Conference rooms in total R, iile I need to use I meeting rooms, the cost is the same, and ask for maximum profit. Eleven, backtracking framework

1. N Queens

Procedure TRY (i: byte);

Var J: byte;

Begin

IF i = n 1.

For j: = 1 to n DO

IF a [i] and c [j i] and c [j-i] THEN BEGIN

x [i]: = j;

a [j]: = false; b [j i]: = false; c [j-i]: = false;

TRY (i 1);

A [J]: = True; B [i J]: = true; C [J-I]: = TRUE

END;

END;

2.Hanoi Tower H (n) = 2 * h (N-1) 1 h (1) = 1

Initial all copper sheets are on a column

Procedure Hanoi (N, A, B, C: Byte); {Move the nth-block copper sheet from the A column to the C column}

Begin

IF n = 0.

Hanoi (N-1, A, C, B); {Move the above N-1 block from the A column to the B column}

Write (N, 'Moved from', A, 'To', C);

Hanoi (N-1, B, A, C); {Move the N-1 block on B from the B column to the C column

END;

The initial copper sheet is distributed on 3 columns, given the target column Goal

H [1..3, 0..n] stores three columns, NOW and NOWP's column number and number, H [

I, 0] Save the number on the i-th column.

Procedure Move (k, goal: integer; {Move the greatest in position to the target column Goal}

Begin

IF k = 0.

For i: = 1 to 3 do

For j: = 1 to han [i, 0] DO

IF H [I, J] = K THEN Begin Now: = i; NOWP: = J; END; {Location of K}

If NOW <> goal dam {is not moved to the target}

Move (K-1, 6-now-goal); {The remaining movement to the unused column}

Writeln (K Moved from Now To Goal);

H [Goal, H [Goal, 0] 1]: = h [now, NOWP]; H [now, nowP]: = 0;

INC (H [Goal, 0]); DEC (H [now, 0]);

Move (k-1, goal); {Left movement to the target}

END;

Twelve, DFS framework

Division of NOIP2001

Procedure Work (dep, pre, s: longint); {The entrance is Work (1, 1, n)}

{DEP is the number of number DPs of the current test, PRE is the number of previous test places, S is the total number of current remaining can be divided.

Var J: longint;

Begin

IF dep = n Then Begin

IF S> = pre. INC (R);

END;

For J: = pre To S Div 2 Do Work (DEP 1, J, S-J);

END;

similar:

Procedure TRY (dep: integer);

VAR i: integer;

Begin

IF dep = K THEN BEGIN

IF TOT> = a [DEP-1] THEN INC (SUM);

EXIT;

For i: = a [DEP-1] to Tot Div 2 Do Begin

a [dep]: = i; dec (TOT, I);

TRY (DEP 1);

INC (TOT, I); END;

End; {TRY}

Thirteen, BFS framework

IOI94 room problem

HEAD: = 1; tail: = 0;

While Tail

INC; TAIL

Fork: = 1 to n DO

IF K Direction Extension THEN Begin

INC; HEAD;

List [head] .x: = list [tail] .x DX [k]; {expand new node list [head]}

List [head] .y: = list [tail] .y dy [k];

Handling new nodes list [head];

END;

END;

Fifteen, data structure related algorithm

1. Link list positioning function LOC (i: integer): Pointer; {look for pointers in the i-th sideworth in the list}

Procedure Loc (L: Linklist; i: integer): Pointer;

VAR P: ​​POINTER;

J: integer;

Begin

P: = L.HEAD; J: = 0;

IF (i> = 1) and (i <= l.len) THEN

While j

Loc: = P;

END;

2. Single-link table insertion operation

Procedure INSERT (L: Linklist; i: integer; x: datatype);

VAR P, Q: POINTER;

Begin

P: = LOC (L, I);

NEW (q);

Q ^ .data: = x;

Q ^ .next: = p ^ .next;

p ^ .next: = q;

inc (L.LEN);

END;

3. Single-link table deletion

Procedure delete (l: linklist; i: integer);

VAR P, Q: POINTER;

Begin

P: = LOC (L, I-1);

Q: = P ^ .next;

p ^ .next: = q ^ .next;

Dispose (Q);

Dec (L.1);

END;

4. Insert operation of the double-linked list (insertion of new node Q)

P: = LOC (L, I);

NEW (q);

Q ^ .data: = x;

Q ^ .pre: = P;

Q ^ .next: = p ^ .next;

p ^ .next: = q;

Q ^ .next ^ .pre: = = q;

5. Double-linked list of deletions

P: = LOC (L, I); {p is the node to delete}

p ^ .pre ^ .next: = p ^ .next;

P ^ .next ^ .pre: = p ^ .pre;

Dispose (P);

转载请注明原文地址:https://www.9cbs.com/read-105356.html

New Post(0)