Fast calculation method for solving the remainder of the large integer model in the non-symmetric encryption algorithm

zhaozj2021-02-16  60

premise:

The complement of the analog number is smaller than the modulus itself;

definition:

Suppose: i = uint.maxvalue 1;

Integer a = A0 * I0 A1 * I1 A2 * I2 ... AE * IE; AI

Mode M = M0 * I0 M1 * I1 M2 * I2 ... MK * IK; MI i;

Solve: a% M

solution:

Set: n = ik 1-m;

Because: mk> 0;

So: N = N0 * I0 N1 * I1 N2 * I2 ... NK * IK; NI

When e

A% m = a;

When e> k:

Set: z = e-k-1;

Because: i> = mk 1;

and so:

AE * i * IE-1> = mk * ae * IE-1 AE * IE-1;

AE * IE> = ae * mk * ik z ae * ik z;

AE * IE> = ae * iz * (mk * ik ik);

because:

IK> M0 M1 * I1 M2 * I2 ... MK-1 * IK-1;

IK MK * IK> M;

A> = ae * ie;

and so:

A> ae * IZ * m;

A% m = (a-ae * IZ * m)% m;

A% m = (a-ae * IZ * (IK 1-N))% M;

A% m = (a-ae * IZ * IK 1 AE * IZ * N)% m;

A% m = ((A0 A1 * I1 ... AE-1 * IE-1) AE * IZ * n)% m;

A% M = ((A0 A1 * I1 ... AZ-1 * IZ-1) (AZ * IZ AZ 1 * IZ 1 ... AE-1 * IE-1) ae * iz * N)% m;

A% m = ((A0 A1 * I1 ... AZ-1 * IZ-1)

((AZ * IZ AZ 1 * IZ 1 ... AE-1 * IE-1) AE * IZ * (N0 N1 * I1 ... NK * IK))))% M;

A% m = ((A0 A1 * I1 ... AZ-1 * IZ-1)

((AZ * IZ AZ 1 * IZ 1 ... AE-1 * IE-1) AE * (N0 * IZ N1 * IZ 1 ... NK * IE-1)))))) M.

A% m = ((A0 A1 * I1 ... AZ-1 * IZ-1)

((AZ AE * N0) * IZ (AZ 1 AE * N1) * IZ 1 ... (AE-1 AE * NK) * IE-1))% m;

When e = k:

When a

When A> = M:

Because: 2 * mk> i; so:

2 * m> a;

M> a-m> = 0;

A% m = a-m = a N-IK 1 = (A N)% IK 1;

C # code implementation:

From the author's CMS.Security.RSA class, please email: iswdj@263.net or QQ: ISWDJ@263.net or QQ: 228512046 to ask the author.

///

/// Calculate the remainder of unsigned large integer modes without symbol.

///

/// The rest of the number will change

/// Enthemicals of the modulus, the smaller the value of the ADCM [Length-1], the faster the calculation, the faster

/// Storage remainder value, array length should be equal to or greater than an array array length

Private void mod (uint [] inx, uint [] adcm, uint [] OUTV)

{

/ *

* If your calling program cannot determine if the OUTV array length is equal to an array length, enable this statement.

* Note that the length of the OUTV array cannot be less than the length of the analog number.

* Array.clear (OUTV, 0, OUTV.LENGTH);

* /

INT I, IV;

Uint Mult;

Ulong Temp;

INT LEN_X = Inx.Length;

INT LEN_M = adcm.length;

IF (len_x

{

Array.copy (Inx, 0, OUTV, 0, LEN_X);

For (i = len_x; i

Return;

}

While (- len_x> = len_m)

{

MULT = INX [LEN_X];

Inx [len_x] = 0;

While (MULT> 0)

{

TEMP = 0;

IV = len_x-len_m;

For (i = 0; i

{

Temp = (ulong) ADCM [i] * Mult Inx [iv];

Inx [iv] = (uint) TEMP;

TEMP >> = 32;

IV ;

}

Mult = (uint) TEMP;

}

}

TEMP = 0;

For (i = 0; i

{

Temp = (Ulong) ADCM [i] Inx [i];

OUTV [I] = (uint) TEMP;

TEMP >> = 32;

}

IF (Temp! = 1) Array.copy (Inx, 0, OUTV, 0, LEN_M);

}

转载请注明原文地址:https://www.9cbs.com/read-23024.html

New Post(0)