When n> 2
X ^ n y ^ n = z ^ n = y ^ n x ^ n
X ^ (2) * x ^ (N-2) x * y (n) / xz ^ (n) = 0 y ^ (2) * y ^ (n-2) y * x (n) / yz ^ (n) = 0
X = {-Y ^ (N) / x ( -) [y ^ (2N) / x ^ (2) 4 * x ^ (N-2) * z ^ (n)] ^ (1/2) ]} / {2x ^ (n-2)} .......
1 = {-Y ^ (N) / x ( -) [y ^ (2N) / x ^ (2) 4 * x ^ (N-2) * z ^ (n)] ^ (1/2) ]} / 2 * x ^ (n-3) .......
-Y ^ (n) / x ( -) [y ^ (2N) / x ^ (2) 4 * x ^ (N-2) * z ^ (n)] ^ (1/2)] - 2X ^ (n-3) = 0 .......
(1): -y ^ (n) / x-2x ^ (n-3) = 0 .......
(2): [Y ^ (2N) / x ^ (2) 4 * x ^ (N-2) * z ^ (n)] ^ (1/2)] = 0 .......
(A): y = 0 (a *): y = 0
(B): x> <0 (b *): x = 0
(C): z = 0 (c *): z = 0
(A) contradiction with (a *)
It has not been solved.
The equilibrium symmetry is the most likely to form a breakthrough point because there is a different body.
Then follow the symmetrical clue or an estimate lead, and the like clues. Go on.